

Markscheme

May 2018

Biology

Higher level

Paper 2

14 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Section B

Extended response questions – quality mark

- Extended response questions for HLP2 each carry a mark total of [16]. Of these marks, [15] are awarded for content and [1] for the quality
 of the answer.
- [1] for quality is awarded when:
 - the candidate's answers are clear enough to be understood without re-reading.
 - the candidate has answered the question succinctly with little or no repetition or irrelevant material.

Section A

C	uesti	on	Answers	Notes	Total
1.	а	i	«130 − 85 » = 45 «mm² » ✓	Allow answers in the range of 40 to 50 «mm²»	1
1.	a	ii	 a. S1/S2 is longer in short day plants	Accept vice versa.	2 max
1.	b		 a. rosette of plant grown in long day has fewer leaves ✓ b. rosette leaf number of plant grown in long day plateaus/stays constant while the number continues to increase for plants grown in short days ✓ 	Accept vice versa. OWTTE.	2 max
1.	С		 a. lower starch levels at end of night in all stages ✓ b. lower starch levels at end of night in both plants grown in short day and long days;; c. no evidence that starch is being used for respiration OR starch may have been exported/stored in other tissues/example tissue «rather than used in respiration» ✓ 		2 max

(Question 1 continued)

C	uesti	on	Answers	Notes	Total	
1.	d	i	higher in plants grown in short days in S1 and higher in plants grown in long days for all other stages/S2, S3 and S4 ✓	Candidates must mention all stages for the mark.	1	
1.	d	ii	a. leaves in plants grown in long day receive longer period of light / more leaf surface area so more photosynthesis occurs resulting in more starch ✓	Accept vice versa.		
			 b. plants in short days using starch to produce more leaves/for growth/S2 a period of rapid increase in number of leaves ✓ 	Accept vice versa.	2	
1.	е		a. «mRNA» transcripts differ in plants grown in long days and short days ✓	Accept an example of such a transcript from the bar chart		
			 b. indicates different genes are being expressed ✓ 	Accept other valid reason.		
			c. plants adapt to different daylight regimes by altering gene expression ✓			
			d. short day length causes struggle to get enough light to photosynthesize and more «mRNA» transcripts related to photosynthesis		3 max	
			OR			
			plants produce large leaves rapidly when grown in long days which may result in more transcripts for biotic stress ✓			
1.	f		a. long day plant ✓			
			b. flowering hormone metabolism gene over represented in long day exposure			
			c. fewer leaves produced «rapidly» by plant in long day as energy shifted to flower formation ✓	Accept other valid reasons from the data	2 max	
			d. plants grown in short days produce more leaves over longer period before beginning to flower/need to use light more efficiently to photosynthesize ✓	Allow ECF if student indicates short day plant.		

C	uesti	on	Answers	Notes	Total
2.	а		 a. I. cytosine ✓ (NOT simply Nitrogenous base) b. II. sugar-phosphate/covalent/phosphodiester bond ✓ c. III. phosphate ✓ (NOT phosphorus) 	Award [1] for any two correct responses.	2 max
			d. IV.deoxyribose ✓ (NOT pentose sugar)		
2.	b	i	 a. help to supercoil/pack DNA in chromosomes ✓ b. help to regulate transcription / gene expression ✓ 		1 max
2.	b	ii	 a. experiment is meant to determine whether DNA or protein is the genetic material ✓ b. viruses/bacteriophages grown in radioactive S/S³⁵ which enters the protein coat ✓ c. viruses/bacteriophages grown in radioactive P/P³² which enters the DNA ✓ d. «radioactive» viral DNA entered the bacterial cell during infection <i>OR</i> «radioactive» viral protein did not enter the bacterial cell during infection ✓ 		3 max
2.	b	iii	regulator of gene expression/introns/telomeres/genes for tRNA / rRNA / promoter / enhancer / silencer / site for primer to bind / codes for mRNA primer ✓		1
2.	С	i	binding/entry of tRNA carrying amino acids/aminoacyl tRNA / charged tRNA / site of transfer of growing polypeptide chains/peptide bond formation ✓	Marks can be awarded to an annotated diagram.	1
2.	С	ii	 a. ATP «hydrolysis» provides energy for amino acid attachment ✓ b. they attach a specific amino acid to the (3') end / free CCA of a tRNA ✓ c. they do this repeatedly / they attach amino acid to all of the tRNA molecules that have anticodon corresponding to that amino acid ✓ 		2 max

C	Questi	on	Answers	Notes	Total
3.	а	i	 a. anaphase II ✓ b. as four daughter cells are being formed OR the centromeres split / sister chromatids separate OR sister chromatids/ chromosomes are pulled «by the spindle microtubules» to opposite poles ✓ 		2
3.	а	ii	 a. two «or more» traits/genes are inherited independently of one another ✓ b. observed for traits/genes that are not linked/far apart on the chromosome ✓ c. «due to homologous» chromosomes aligning independently/randomly on equator during metaphase I/meiosis I ✓ d. during anaphase I homologues pulled to separate poles ✓ 	Accept vice versa. Can be shown in annotated diagram.	2 max
3.	b		 a. correct parental genotypes shown / Ff ii, Ffl^A l^B ✓ b. Punnett square with correct gametes shown ✓ c. correct probability: 1/8 OR 12.5% ✓ 	Must use blood type symbols I ^B I ^A and i. No specific letters required to represent cystic fibrosis allele though dominant and recessive must be apparent.	3

C	uesti	on	Answers	Notes	Total
4.	а		a. secondary structure includes alpha helices/beta pleated sheets ✓		
			 b. secondary structure «of this protein» consists «mainly» of alpha helices ✓ 		
			c. spiral coils «of polypeptide chain» held together by hydrogen bonds \checkmark		3 max
			 d. between oxygen «C=O» and hydrogen atoms «N–H» of amino acids «on backbone» ✓ 		
			e. «some» beta pleated sheets present in this protein ✓		
4.	b	i	salivary glands <i>AND</i> pancreas ✓	Both needed.	1
4.	b	ii	breaks down starch «by hydrolysis» into maltose/disaccharides ✓		1
4.	С		a. enzymes work by forming enzyme-substrate complexes ✓	Can show these points in an annotated diagram.	
			 b. binding of substrate«s» to active site «of enzyme» ✓ 	annotated diagram.	
			c. «enzyme» changes shape slightly		
			OR		3 max
			puts strains on chemical bonds «of substrate» ✓		
			d. decreases activation energy / increases rate of reaction ✓		
			e. enzymes bind to specific substrates ✓		

Section B

Clarity of communication: [1]

The candidate's answers are clear enough to be understood without re-reading. The candidate has answered the question succinctly with little or no repetition or irrelevant material.

Question	Answers	Notes	Total
5. a	 a. early evidence showed membranes are partially permeable <i>AND</i> organic solvents penetrate faster than water ✓ b. suggests they have non-polar regions ✓ c. chemical analysis showed membranes consist mainly of proteins and lipids ✓ d. layer of phospholipids spread over water, orientate themselves into monolayer with nonpolar/hydrophobic tails out of water and polar/hydrophilic heads in water surface ✓ e. when shaken with water form micelles/particles with tails inwards away from water ✓ f. Davson–Danielli model proposed phospholipid bilayer coated with protein molecules on both surfaces ✓ g. evidence from electron microscopy «supported Davson–Danielli model» ✓ h. three-layered structure/ sandwich/railway tracks/two dark bands with a light band between ✓ i. model could not account for hydrophobic proteins / artifacts due to low resolution ✓ j fluorescent labelling / freeze fracturing later used to investigate membrane structure ✓ k. led to Singer-Nicholson / fluid mosaic model of protein molecules floating in fluid lipid bilayer ✓ l. shows particles/proteins project partially and sometimes right through lipid bilayer ✓ m. indicates peripheral and integral proteins present ✓ 	Accept any of the points clearly explained in an annotated diagram.	8 max

(Question 5 continued)

C	uestion	Answers	Notes	Total
5.	b	 a. (simple diffusion) of nutrients along/down a concentration gradient ✓ b. example of simple diffusion eg fatty acids ✓ c. facilitated diffusion of nutrients involves movement through channel proteins ✓ d. example of nutrient diffusion eg fructose ✓ e. active transport of nutrients against a concentration gradient / involving protein pumps ✓ f. example of active transport, eg (iron) ions/glucose/amino acids ✓ g. endocytosis / by means of vesicles ✓ h. example of nutrient for endocytosis, eg cholesterol in lipoprotein particles ✓ 		4 max
5.	С	 a. active transport/loading of sucrose/amino acids/organic metabolites ✓ b. sucrose moves by apoplastic / symplastic routes ✓ c. «loading» at source into companion cells «of sieve tubes» ✓ d. movement «of sucrose» through plasmodesmata ✓ e. high concentration of solutes in phloem leads to water movement by osmosis ✓ 		3 max

(Plus up to [1] for quality)

Question	Answers	Notes	Total
6. a	a. «cell» respiration is the «controlled» release of energy from organic compounds to produce ATP ✓ b. «cell respiration» involves the oxidation and reduction of electron carriers ✓ c. in link reaction pyruvate is converted into acetyl coenzyme A, CO₂ is released and NAD is reduced ✓ d. in the Krebs cycle, a 4 C molecule combines with acetyl CoA ✓ e. decarboxylation releases 2 CO₂ molecules for each pyruvate / conversion of 6C to 5C/5C to 4C releases CO2 ✓ f. «3» reduced NAD and «1» reduced FAD are produced ✓ g. ATP generated in the Krebs cycle ✓ h. reduced molecules/FAD/NAD are carried to the cristae/inner membrane of the mitochondria ✓ i. transfer of electrons between carriers in the electron transport chain in the membrane of the cristae is coupled to proton pumping ✓ j. protons accumulate in intermembrane space/ between cristae/inner membrane and outer membrane OR proton / electrochemical gradient between intermembrane space and matrix is established ✓ k. protons diffuse through ATP synthase to generate ATP ✓ l. chemiosmosis is the use of a proton/electrochemical gradient to generate ATP ✓	Accept any of the points in a correctly annotated diagram.	8 max
	m. oxygen is the final electron acceptor ✓		

(Question 6 continued)

C	uestion	Answers	Notes	Total
6.	b	a. ventilation is exchange of gases between lungs and air ✓	Both needed.	
		b. during inhalation diaphragm contracts AND lowers ✓		
		c. external intercostal muscles contract, raising ribs upwards and outwards ✓		
		d. increase in volume <i>AND</i> decrease in pressure within thoracic cavity ✓		4 max
		e. air drawn into alveoli bringing fresh supply of oxygen ✓		
		f. oxygen concentration in alveolar sacs is higher than in blood capillaries ✓		
		g. «oxygen concentration gradient» causes oxygen to diffuse out of alveoli into red blood cells in capillaries ✓		
6.	С	a. pyramid of energy has stepped shape with largest bottom step being producers, then first consumer, second consumer, etc ✓		
		b. light energy «from sun» converted to chemical energy in carbon compounds by photosynthesis ✓		
		c. energy released by respiration is used in living organisms AND converted to heat ✓		3 max
		d. heat «energy» is lost from ecosystems ✓		
		e. approximately 10 % of energy in trophic level converted into new material for next level ✓		
		f. energy also lost as undigested material/uneaten material/feces/excretion ✓		

(Plus up to [1] for quality)

Question	Answers	Notes	Total
7. a	 a. specific immune response/antibody production as a consequence of the presence of bacterial antigens ✓ 		
	b. macrophage / phagocyte ingests bacterial pathogen displaying bacterial antigens on surface ✓		
	c. attached to major histocompatibility/MHC molecules ✓		
	d. helper T cell activated by presentation of antigen on surface of macrophage ✓		
	e. activated helper T cell binds to B cell specific to the antigen ✓		
	f. stimulated B cell undergoes repeated mitotic/cell divisions ✓		
	g. «cells enlarge and differentiate» to form clone of plasma cells ✓		
	h. plasma cells produce <u>specific</u> antibodies ✓		8 max
	i. antibodies bind to bacteria making them easier to digest by white cells		0 233022
	OR		
	opsonization		
	OR		
	agglutination ✓		
	j. (some antibodies combined with antigen) activate a complement cascade to kill bacteria directly 🗸	OWTTE.	
	k. some antibodies act as antitoxins / neutralize toxins / change chemical structure of toxins ✓		
	I. once begun, antibody production lasts for several days until all antigens destroyed 🗸		
	m. memory cells remain in blood giving extended immunity \checkmark		

(Question 7 continued)

C	uestion	Answers	Notes	Total
7.	b	 a. problem results from excessive use of antibiotics by doctors/veterinarians/in livestock <i>OR</i> low antibiotic doses taken by patients (not finishing treatment) ✓ b. natural variation exists in any population of bacteria making some resistant to a specific antibiotic ✓ c. variation arises from mutation <i>OR</i> antibiotic resistance can be transferred between bacteria by plasmids ✓ d. antibiotic kills most bacteria except those that are resistant ✓ e. resistant bacteria survive, reproduce and pass on resistance to offspring ✓ f. soon population is made of mainly antibiotic resistant bacteria ✓ g. this is an example of natural selection «increasing frequency of characteristics that make individuals better adapted to environment» ✓ 		4 max
7.	С	 a. decomposition of dead organic material «by saprotrophic bacteria» ✓ b. «decomposition» leads to CO₂ formation/regeneration due to respiration ✓ c. «saprotrophic bacteria only» partially decompose dead organic matter in acidic/anaerobic conditions in waterlogged soil ✓ d. results in peat formation in bogs/swamps ✓ e. photosynthetic bacteria/cyanobacteria fix CO₂ in photosynthesis ✓ 		3 max

(Plus up to [1] for quality)